當(dāng)前位置: 首頁 SCI期刊 SCIE期刊 數(shù)學(xué) 中科院3區(qū) JCRQ3 期刊介紹(非官網(wǎng))
    Acta Arithmetica

    Acta ArithmeticaSCIE

    國際簡稱:ACTA ARITH  參考譯名:算術(shù)雜志

    • 中科院分區(qū)

      3區(qū)

    • CiteScore分區(qū)

      Q3

    • JCR分區(qū)

      Q3

    基本信息:
    ISSN:0065-1036
    E-ISSN:1730-6264
    是否OA:未開放
    是否預(yù)警:否
    TOP期刊:否
    出版信息:
    出版地區(qū):POLAND
    出版商:Instytut Matematyczny
    出版語言:Multi-Language
    出版周期:Semimonthly
    研究方向:數(shù)學(xué)-數(shù)學(xué)
    評價信息:
    影響因子:0.5
    H-index:35
    CiteScore指數(shù):1
    SJR指數(shù):0.562
    SNIP指數(shù):0.858
    發(fā)文數(shù)據(jù):
    Gold OA文章占比:3.27%
    研究類文章占比:100.00%
    年發(fā)文量:93
    英文簡介 期刊介紹 CiteScore數(shù)據(jù) 中科院SCI分區(qū) JCR分區(qū) 發(fā)文數(shù)據(jù) 常見問題

    英文簡介Acta Arithmetica期刊介紹

    The journal publishes papers on the Theory of Numbers.

    期刊簡介Acta Arithmetica期刊介紹

    《Acta Arithmetica》是一本數(shù)學(xué)優(yōu)秀雜志。致力于發(fā)表原創(chuàng)科學(xué)研究結(jié)果,并為數(shù)學(xué)各個領(lǐng)域的原創(chuàng)研究提供一個展示平臺,以促進數(shù)學(xué)領(lǐng)域的的進步。該刊鼓勵先進的、清晰的闡述,從廣泛的視角提供當(dāng)前感興趣的研究主題的新見解,或?qū)彶槎嗄陙砟硞€重要領(lǐng)域的所有重要發(fā)展。該期刊特色在于及時報道數(shù)學(xué)領(lǐng)域的最新進展和新發(fā)現(xiàn)新突破等。該刊近一年未被列入預(yù)警期刊名單,目前已被權(quán)威數(shù)據(jù)庫SCIE收錄,得到了廣泛的認(rèn)可。

    該期刊投稿重要關(guān)注點:

    Cite Score數(shù)據(jù)(2024年最新版)Acta Arithmetica Cite Score數(shù)據(jù)

    • CiteScore:1
    • SJR:0.562
    • SNIP:0.858
    學(xué)科類別 分區(qū) 排名 百分位
    大類:Mathematics 小類:Algebra and Number Theory Q3 78 / 119

    34%

    CiteScore 是由Elsevier(愛思唯爾)推出的另一種評價期刊影響力的文獻計量指標(biāo)。反映出一家期刊近期發(fā)表論文的年篇均引用次數(shù)。CiteScore以Scopus數(shù)據(jù)庫中收集的引文為基礎(chǔ),針對的是前四年發(fā)表的論文的引文。CiteScore的意義在于,它可以為學(xué)術(shù)界提供一種新的、更全面、更客觀地評價期刊影響力的方法,而不僅僅是通過影響因子(IF)這一單一指標(biāo)來評價。

    歷年Cite Score趨勢圖

    中科院SCI分區(qū)Acta Arithmetica 中科院分區(qū)

    中科院 2023年12月升級版 綜述期刊:否 Top期刊:否
    大類學(xué)科 分區(qū) 小類學(xué)科 分區(qū)
    數(shù)學(xué) 3區(qū) MATHEMATICS 數(shù)學(xué) 3區(qū)

    中科院分區(qū)表 是以客觀數(shù)據(jù)為基礎(chǔ),運用科學(xué)計量學(xué)方法對國際、國內(nèi)學(xué)術(shù)期刊依據(jù)影響力進行等級劃分的期刊評價標(biāo)準(zhǔn)。它為我國科研、教育機構(gòu)的管理人員、科研工作者提供了一份評價國際學(xué)術(shù)期刊影響力的參考數(shù)據(jù),得到了全國各地高校、科研機構(gòu)的廣泛認(rèn)可。

    中科院分區(qū)表 將所有期刊按照一定指標(biāo)劃分為1區(qū)、2區(qū)、3區(qū)、4區(qū)四個層次,類似于“優(yōu)、良、及格”等。最開始,這個分區(qū)只是為了方便圖書管理及圖書情報領(lǐng)域的研究和期刊評估。之后中科院分區(qū)逐步發(fā)展成為了一種評價學(xué)術(shù)期刊質(zhì)量的重要工具。

    歷年中科院分區(qū)趨勢圖

    JCR分區(qū)Acta Arithmetica JCR分區(qū)

    2023-2024 年最新版
    按JIF指標(biāo)學(xué)科分區(qū) 收錄子集 分區(qū) 排名 百分位
    學(xué)科:MATHEMATICS SCIE Q3 325 / 489

    33.6%

    按JCI指標(biāo)學(xué)科分區(qū) 收錄子集 分區(qū) 排名 百分位
    學(xué)科:MATHEMATICS SCIE Q3 297 / 489

    39.37%

    JCR分區(qū)的優(yōu)勢在于它可以幫助讀者對學(xué)術(shù)文獻質(zhì)量進行評估。不同學(xué)科的文章引用量可能存在較大的差異,此時單獨依靠影響因子(IF)評價期刊的質(zhì)量可能是存在一定問題的。因此,JCR將期刊按照學(xué)科門類和影響因子分為不同的分區(qū),這樣讀者可以根據(jù)自己的研究領(lǐng)域和需求選擇合適的期刊。

    歷年影響因子趨勢圖

    本刊中國學(xué)者近年發(fā)表論文

    • 1、Ramanujan-Sato series for 1/?

      Author: Huber, T. I. M.; Schultz, D. A. N. I. E. L.; Ye, D. O. N. G. X., I

      Journal: ACTA ARITHMETICA. 2023; Vol. 207, Issue 2, pp. 121-160. DOI: 10.4064/aa220621-19-12[121]

    • 2、Formulas for moments of class numbers in arithmetic progressions

      Author: Bringmann, Kathrin; Kane, Ben; Pujahari, Sudhir

      Journal: ACTA ARITHMETICA. 2023; Vol. , Issue , pp. -. DOI: 10.4064/aa210927-21-11

    • 3、Ramanujan-Sato series for 1/pi

      Author: Huber, T. I. M.; Schultz, D. A. N. I. E. L.; Ye, D. O. N. G. X., I

      Journal: ACTA ARITHMETICA. 2023; Vol. , Issue , pp. -. DOI: 10.4064/aa220621-19-12

    • 4、A connection between uniqueness of the Riemann zeta function and the Riemann hypothesis and beyond

      Author: Hu, Pei-Chu; LI, Bao Qin

      Journal: ACTA ARITHMETICA. 2023; Vol. 207, Issue 2, pp. 183-200. DOI: 10.4064/aa220924-9-1

    • 5、One-level density of quadratic twists of L-functions

      Author: Gao, Peng; Zhao, Liangyi

      Journal: ACTA ARITHMETICA. 2023; Vol. , Issue , pp. -. DOI: 10.4064/aa220613-13-12

    • 6、On d-complete sequences of integers, II

      Author: Chen, Yong-Gao; Yu, Wang-Xing

      Journal: ACTA ARITHMETICA. 2023; Vol. 207, Issue 2, pp. 161-181. DOI: 10.4064/aa220818-20-1

    • 7、Uniqueness conjecture on simultaneous Pell equations

      Author: Fujita, Yasutsugu; Le, Maohua

      Journal: ACTA ARITHMETICA. 2023; Vol. , Issue , pp. -. DOI: 10.4064/aa221005-1-3

    投稿常見問題

    通訊方式:POLISH ACAD SCIENCES INST MATHEMATICS, SNIADECKICH 8, PO BOX 21,, WARSAW 10, POLAND, 00-956。

    主站蜘蛛池模板: 精品国产一区二区三区久久蜜臀| 亚洲第一区视频在线观看 | 麻豆国产在线不卡一区二区| 日韩a无吗一区二区三区| 亚洲av无码不卡一区二区三区 | 爆乳熟妇一区二区三区霸乳| 亚洲一区在线观看视频| 成人日韩熟女高清视频一区| 免费人妻精品一区二区三区| 日本一区二区视频| 亚洲一区中文字幕久久| 最美女人体内射精一区二区| 亚洲免费一区二区| 国产一国产一区秋霞在线观看| 97人妻无码一区二区精品免费| 国模无码人体一区二区| 国产成人精品一区二三区在线观看| 亚洲AV无码一区二区三区鸳鸯影院| 久久精品亚洲一区二区三区浴池 | 视频一区视频二区制服丝袜| 亚洲一区AV无码少妇电影| 亚洲福利视频一区二区三区| 五月婷婷一区二区| 在线观看国产一区二三区| 亚洲一区二区三区无码国产| 天堂资源中文最新版在线一区| 久久久综合亚洲色一区二区三区 | 在线观看视频一区二区| 一区二区无码免费视频网站| 91福利国产在线观一区二区| 久久久久人妻一区二区三区| 亚洲国产情侣一区二区三区| 亚欧在线精品免费观看一区| 无码人妻精品一区二区蜜桃网站| 国产精品高清一区二区三区不卡| 美女视频一区三区网站在线观看| 亚洲精品精华液一区二区| 日韩免费视频一区| AV怡红院一区二区三区| 精品久久一区二区| 亚洲一区二区三区精品视频|